Exploratory quantile regression with many covariates: an application to adverse birth outcomes.
نویسندگان
چکیده
Covariates may affect continuous responses differently at various points of the response distribution. For example, some exposure might have minimal impact on conditional means, whereas it might lower conditional 10th percentiles sharply. Such differential effects can be important to detect. In studies of the determinants of birth weight, for instance, it is critical to identify exposures like the one above, since low birth weight is a risk factor for later health problems. Effects of covariates on the tails of distributions can be obscured by models (such as linear regression) that estimate conditional means; however, effects on tails can be detected by quantile regression. We present 2 approaches for exploring high-dimensional predictor spaces to identify important predictors for quantile regression. These are based on the lasso and elastic net penalties. We apply the approaches to a prospective cohort study of adverse birth outcomes that includes a wide array of demographic, medical, psychosocial, and environmental variables. Although tobacco exposure is known to be associated with lower birth weights, the analysis suggests an interesting interaction effect not previously reported: tobacco exposure depresses the 20th and 30th percentiles of birth weight more strongly when mothers have high levels of lead in their blood compared with those who have low blood lead levels.
منابع مشابه
Modeling adverse birth outcomes via latent factor quantile regression
We describe a Bayesian quantile regression model that uses a factor structure for part of the design matrix. This model is particularly useful when the data comprise numerous indicators of underlying latent factors that analysts wish to include as covariates. We apply the model to a study of birth weights, for which the effects of covariates on the lower quantiles of the response distribution a...
متن کاملModeling adverse birth outcomes via confirmatory factor quantile regression.
We describe a Bayesian quantile regression model that uses a confirmatory factor structure for part of the design matrix. This model is appropriate when the covariates are indicators of scientifically determined latent factors, and it is these latent factors that analysts seek to include as predictors in the quantile regression. We apply the model to a study of birth weights in which the effect...
متن کاملExtremal Quantile Treatment Effects ∗ Job Market Paper
This paper establishes asymptotic theory and inference method for quantile treatment effect estimators when the quantile index is close or equal to zero. Such quantile treatment effects are of interest in many economic applications, such as the effect of maternal smoking on an infant’s adverse birth outcomes. When the quantile index is close to zero, the sparsity of data jeopardizes conventiona...
متن کاملWeighted quantile regression for analyzing health care cost data with missing covariates.
Analysis of health care cost data is often complicated by a high level of skewness, heteroscedastic variances and the presence of missing data. Most of the existing literature on cost data analysis have been focused on modeling the conditional mean. In this paper, we study a weighted quantile regression approach for estimating the conditional quantiles health care cost data with missing covaria...
متن کاملQuantile Regression Estimation of Panel Duration Models with Censored Data∗
This paper studies the estimation of quantile regression panel duration models. We allow for the possibility of endogenous covariates and correlated individual effects in the quantile regression models. We propose a quantile regression approach for panel duration models under conditionally independent censoring. The procedure involves minimizing l1 convex objective functions and is motivated by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Epidemiology
دوره 22 6 شماره
صفحات -
تاریخ انتشار 2011